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Abstract

Some of the most influential decisions about a software
system are made in the early phases of the software develop-
ment life cycle. Those decisions about requirements and de-
sign are generally made by teams of software engineers and
domain experts who must weigh the complex interactions
among requirements and the associated developmental and
operational risks of those requirements. Some of these early
life cycle decisions are more influential, or perhaps fateful,
to subsequent software design and development than are
others.

When debating about complex systems with a large num-
ber of options, humans can often be slower than an AI sys-
tem at identifying the clusters of key decisions that give the
most leverage. By focusing a group of human domain ex-
perts or software engineers on these key decision clusters,
more time can be devoted to these pivotal decisions and less
time is wasted on irrelevancies.

We are developing a tool based on an integration of:

� JPL’s DDP group decision support tool [3]� WVU’s contrast set learners [7])� Miami University’s cluster visualization tools

Various component of this tool have been tested on case
studies at JPL.

1 Introduction

In early phases of a system development, many crucial
decisions about software are taken. In the process of re-
quirements elicitation and analysis, it is common for clients
to request much more than can be afforded - either because

of budgetary constraints, time limitations, or other issues
like safety concerns. That is, there are risks associated with
requirements. (In this context, we take A broad definition
of risk - anything that gets in the way of satisfying a Re-
quirement.)

There are often things that can be done to lower the risk,
and thus increase the chances of meeting requirements. In
fact any verification or validation activity can be considered
to be a risk reducer. In a typical system development, it
is common for the number of requirements and associated
risks, and therefore the number of possible mitigating ac-
tivities to be quite large. Each of these mitigating actions
has a cost associated with it. The Defect Detection and Pre-
vention (DDP) tool provides an ontology for representing
these requirements, risks, and mitigations, and for reason-
ing about them. DDP is a decision support tool to be used
in the early part of the life cycle of system development. In
this paper, we describe several ways that we are automating
this decision support.

1.1 Imagine the Scene ...

A team of NASA’s top experts are debating options on
some complex deep space mission. The mission is in its
early planning stages so few of the details are fixed. The
science team wants to add a new instrument package to
the mission. But the propulsion experts are already wor-
ried about the payload mass and any addition worries them.
Also, the electronics team members are worried about the
added stress to power consumption and heat production

0SEDECS2003: the 2nd International Workshop on Software Engi-
neering Decision Support (part of SEKE2003); June 20 2003 http://
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03/sekew/star1. URL:http://tim.menzies.us/pdf/03star1.
pdf



DDP assertions are either:

� Requirements (free text) describing the objectives and
constraints of the mission and its development process;� Weights (numbers) associated with requirements, re-
flecting their relative importance;� Risks (free text) describing events that can damage re-
quirements;� Mitigations: (free text) describing actions that can re-
duce risks;� Costs: (numbers) effort associated with mitigations,
and repair costs for correcting Risks detected by Miti-
gations;� Mappings: directed edges between requirements, mit-
igations, and risks.� Part-of relations structure the collections of require-
ments, risks and mitigations;

Figure 1. DDP’s ontology

on the on-board systems. A spirited discussion follows in
which each team tries to explain the costs and benefits of
their various proposals.

In the midst of this heated debated, a screen flickers. The
AI system monitoring the debate produces a visual display
of the several clusters of alternate decisions, each of which
meets cost restrictions and satisfies requirements to an ac-
ceptable level. The visualization of these clusters helps the
team to realize that some sets of decisions, although fea-
sible, do not fit their development organization. Simulta-
neously, the automated monitoring system has just realized
that of the dozens issues remaining, a resolution on (e.g.)
four matters makes debates about most of the other issues
redundant. The AI system presents to the team a decision
cluster- a set of useful alternative decisions. The team finds
that it has consensus on two of those decisions, so those are
quickly adopted. These two decisions greatly reduce the
space of remaining discussions and the group finishes their
debates in time for lunch.

2 The DDP Tool

The above scene is not science fiction- some of the tech-
nology has already been developed and applied to JPL mis-
sions. At JPL, the DDP tool [2] is in use to organize inter-
active knowledge acquisition and decision making sessions
with spacecraft experts . The DDP tool and process works
as follows:

0This work was sponsored by the NASA Office of Safety and Mis-
sion Assurance under the Software Assurance Research Program led by
the NASA IV&V Facility and conducted at the University of Miami,

� 6 to 20 experts are gathered together for short, inten-
sive knowledge acquisition sessions (typically, 3 to 4
half-day sessions). These sessions must be short since
it is hard to gather together these experts for more than
a very short period of time.� The DDP tool supports a graphical interface for the
rapid entry of the assertions. Such rapid entry is essen-
tial, lest using the tool slows up the debate.� Assertions from the experts are expressed in using an
ultra-lightweight decision ontology (e.g. see Figure 1).
The ontology must be ultra-lightweight since:

– Only brief assertions can be collected in short
knowledge acquisition sessions.

– If the assertions get more elaborate, then experts
may be unable to understand technical arguments
from outside their own field of expertise.

The result of these sessions is a network of influences
connecting project requirements to risks to possible mitiga-
tions. A (highly) stylized version of that network is shown
in Figure 2.

The ontology of Figure 1 may appear too weak for use-
ful reasoning. However, in repeated sessions with DDP, it
has been seen that the ontology is rich enough to structure
and simplify debates between NASA experts. For example,
DDP has been applied to over a dozen applications to study
advanced technologies such as
� a computer memory device;� gyroscope design;� software code generation;� a low temperature experiment’s apparatus;� an imaging device;� circuit board like fabrication;� micro electromechanical devices;� a sun sensor;� a motor controller;� photonics; and� interferometry.

In those studies, DDP sessions has found cost savings ex-
ceeding $1 million in at least two of these studies, and lesser
amounts (exceeding $100,000) in the other studies. The
DDP meetings have also generated numerous design im-
provements such as savings power or mass and shifting of

West Virginia University (partially supported by NASA contract NCC2-
0979/NCC5-685) and at the Jet Propulsion Laboratory, California Institute
of Technology (under a contract with the National Aeronautics and Space
Administration). The JPL work was funded by NASA’s Office of Safety
and Mission Assurance, Center Initiative UPN 323-08. That activity is
managed locally at JPL through the Assurance and Technology Program
Office. The second author’s research is also supported in part by National
Science Foundation Grants CCR-0204139 and CCR-0205588. Reference
herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or im-
ply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.
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of the JPL semantic net editor (under construction).

Figure 2. A semantic net of the type used at
JPL [4].

risks from uncertain architectural to better understood de-
sign. Further, at these meetings, some non-obvious sig-
nificant risks have been identified and mitigated. Lastly,
DDP can be used to document resolutions to those debates.
Hence, DDP is in use at JPL:

� not only as a group decision support tool (as it was
designed to do);� but also a design rationale tool to document decisions.

That is not to say DDP cannot be improved.

2.1 Improving DDP with Simulated Annealing

Optimizing risk mitigations means minimizing costs
while maximizing benefits. That is, it is a classic optimiza-
tion problem. A commonly-used search technique for such
optimization is simulated annealing [6], illustrated in Fig-
ure 5. Simulated annealing is a kind of hill-climbing search
for finding a good solution. A simple hill-climber simply
jumps to the next best solution and can hence miss globally
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Figure 3.A: Before. Here, one dot is one project plan; i.e. one possible
setting to the 99 risk mitigation options.
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Figure 3.B: After. Results from applying the constraints learnt by the

TAR2 contrast set learner.

Figure 3. An application of TAR2. X-axis=
“cost” = sum of the cost of selected risk miti-
gations (lower is better). Y-axis= “benefit”=
requirements coverage, less the effects of
risk (more is better)

optimal solutions since it can’t move to a near-by higher
peak if, to do so, means traveling down-hill across a valley.
Simulated annealing avoids this problem using a “jump”
factor that is a function of a “temperature” variable. At
high “temperatures”, simulated annealing can sample more
of the local terrain since it can jump up-hill or down-hill.
As the search proceeds and the “temperature” cools, simu-
lated annealing jumps less and less. Eventually, the jumping
mechanism “freezes” and simulated annealing completes its
search like a simple hill climber.

A simulated annealing capability is now part of the DDP
tool [9]. This gives automated support for the difficult
choices that project managers have to make among possi-
ble mitigations needed to reduce risk to acceptable levels.
It is common in systems being developed at JPL for expert
to identify 50 to 100 risks to requirements, and 50 to 100
mitigating actions that can be taken to reduce these risks to
acceptable levels. Making a binary choice for each of 50
mitigations gives a search space of size

�����
. A simulated

annealing algorithm can search this space in a few minutes
to give an adequate solution, or can be run for several hours
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Figure 4. Clusters of mitigations.

to give a near optimal solution.
In a typical JPL system development, such a search could

be conducted overnight, between DDP sessions. This would
provide the session participants the additional information
that they need to finish the requirements and/or high level
design.

2.2 Improving DDP with Clustering

When search a complex space of decision options, sim-
ulated annealing produces a near-optimal solution. That
is, after a large number of steps of the simulated anneal-
ing algorithm, a set of decisions is discovered that meets
the objective function, and meets it more closely than any
other decision set checked. (Simulated annealing is a estab-
lished, well validated search algorithm that generally pro-
duces good results.) However, it should be noted that the
data of this search space is generally produced by expert
judgment. Although such judgments are typically quite
good (and are the best measure available), they cannot be
assumed to be completely accurate. Thus, other sets of de-
cisions, that are judged to meet the objective function at a
slightly lower level, may have other properties that make
them more desirable.

For example, if there are 100 decisions to be made (per-
haps 100 mitigating activities that the project manager may
do to assure product quality), there are

�����	�
possible sets

of decision that could be taken. Of these, it would not
be surprising for the simulated annealing to identify 1000
that are within 2value of the objective function. To ask a
project manager or management team to chose among these
1000 may be a daunting task. We have been experimenting
with various clustering strategies to reduce the complexity
of this decision. As seen in figure Figure 4, this large num-
ber of decisions may be collected into a much smaller of
clusters. Each cluster has the property that all its members
share 95decision. With this visualization, the human ex-
perts can now choose the cluster that best fits the character-
istics of their development organization. That is, if the man-

agement team is aware that their team is especially strong
in formal specification, but much weaker in model check-
ing, then they would choose a cluster that includes more
formal specification activities rather than model checking
activities.

3 Improving DDP with the TAR2 Tool

In a typical use of DDPU, experts sketch out mappings
between requirements, risks, and mitigations then search for
the cheapest mitigations that most reduce risks. As dis-
cussed previously, this search can be overwhelming large.
Figure 3.A shows the results of 50,000 runs with DDP for
one deep space mission with 99 possible mitigations; i.e.��
	
���������

possibilities. This space is too large to explore
thoroughly. In each run, a random set of mitigations were
selected each time. Note the huge range of possible costs
and benefits.

The range of possibilities shown in Figure ??.A seems
dauntingly large. However, our TAR2 contrast set learner
has shown that a heated discussion on most of the risk
mitigations would be a complete waste of time. A con-
trast set learner finds the differences in variable settings
seen in different situations. For example, an analyst could
ask a contrast set leaner “what are the differences between
people with Ph.D. and bachelor degrees?”. TAR2 differs
from other contrast set learners such as TARZAN [8] and
STUCCO [1] in that it searches for the smallest contrast set
that most separates preferred and undesired behavior.

TAR2 divided Figure 3.A into “preferred” and “unde-
sired” regions (here, “preferred” means lower costs and
higher benefits and “undesired” means not preferred). With
knowledge of that division, TAR2 learnt a set of constraints
that select for the preferred outcomes while avoiding the un-
desired regions. The goal of TAR2 is to improve the mean
and reduce the variance in the behavior of a system.

Figure 3.A shows 50,000 runs with DDP using mitiga-
tions compatible with the constraints learnt by TAR2. Com-
paring Figure 3.A withFigure 3.B, we see that the variance
in behavior has indeed been greatly reduced while decreas-
ing mean costs and increasing mean benefits.

TAR2 generated Figure 3.B using only a small subset
of the available risks mitigations. TAR2 made recommen-
dations on only

������ of the 99 mitigations available in this
DDP models.

Further details on this use of TAR2 on a DDP dataset are
found in reference [5].

3.1 Drawbacks with TAR2

Figure 3.B shows that it is possible to use DDP models to
optimize risk mitigation actions for complex systems, using
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only a small subset of the available options. However, in
two aspects, the TAR2 experiment was a failure:

� The runtime problems: TAR2 is too slow. The DDP
model had to be executed 50,000 times to learn the
constraints that generated Figure 2b. This runtime
is too long to support interactive argument support.
Worse still, bigger DDP models would take even
longer to execute. Clearly, a faster method is required.� The hiding problem. TAR2’s output can hide important
details. Recall from Figure 3.B that there exists a clus-
ter of results that are the best TAR2 can find. While
any point in those clusters are the best TAR2 can offer,
adjacent points in the cluster may represent very dif-
ferent mitigations, some of which are more acceptable
to the users than others.

TAR2 ran slow since it sampled a large run where miti-
gations were selected randomly. Perhaps some other search
might be more appropriate? In the sequel, we will discuss
the merits of TAR2’s search vs simulated annealing.

As to the hiding problem, we believe it is best addressed
as a quantitative value problem. A limitation of the DDP
ontology is that it asks a set of experts to agree upon some
numeric quantity (using a number between 0.0 and 1.0) to
rate various relationships: e.g., the impact of risks on ob-
jects, the effect of mitigations on risk, etc. In our experi-
ence, these experts have been able to do this. However, it is
clear that the resulting model is less robust than the numeric
values may suggest.

It is our hypothesis that such experts may be more com-
fortable agreeing upon a probability distribution that repre-
sents the impact of a risk on an objective or the effect of a
mitigation on a risk. That is, they would be given a small
number of possible distributions having previously been in-
formed about the characteristics of each and asked to pick
among them. They would also have to pick the appropriate
parameters for each – e.g. mean and standard deviation for
a normal distribution.

The thought is that, although this is more information
for the experts to agree upon, it might get agreement faster
since they would be recognizing that there is some embed-
ded uncertainty in these values. agreeing upon a probabil-
ity distribution that represents the impact of a risk on an
objective or the effect of a mitigation on a risk. That is,
they would be given a small number of possible distribu-
tions (having previously been informed about the character-
istics of each) and asked to pick among them. They would
also have to pick the appropriate parameters for each – e.g.
mean and standard deviation for a normal distribution. Our
thinking is that, although this is more information for the
experts to agree upon, it might get agreement faster since
they would be recognizing that there is some embedded un-
certainty in these values.

Fitness

local
optima

global
optima

start

Figure 5. Simulated annealing, an example.

3.2 Is Simulated Annealing Better Than TAR2?

Figure 6 compares TAR2 and simulated annealing. At
each round X (shown on the x-axis), simulated annealing or
TAR2 was used to extract key decisions from a log of runs
of a DDP model. A new log is generated, with the inputs
constrained to the key decisions found between round zero
and round X. Further rounds of learning continue until the
observed changes on costs and benefits stabilizes.

It is insightful to compare the results from TAR2 and
simulated annealing:

� As seen in Figure 6, simulated annealing and TAR2
terminate in (nearly) the same cost-benefit zone.� Simulated annealing did so using only 40% of the data
needed by TAR2; i.e. while TAR2 needed 50,000 runs
of DDP, the simulated annealing method needed only
20,000.� The bad news is that, while TAR2 proposed con-
straints on 33% of the mitigations, simulated annealing
proposed actions on 100% of the mitigations. Such
a result is consistent with the nature of simulated
annealing- this search is a global search through all
options. Hence, it tends to propose solutions to a large
part of the model.

In summary, the directed search of simulated annealing
needs less data than TAR2, but in doing so, we lose the main
advantage of TAR2; i.e. no drastic reduction in the space of
options.

4 Conclusions and Future Work

Our current work has produced a set of tools to support
decisions that need to be made by software engineers early
in the software development life cycle. The DDP tool sup-
ports a model of requirements, risks (things that may cause
requirements not to be attained), and mitigations (activities
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Figure 6. Comparison of TAR2 and simulated
annealing.

to reduce these risks.) This tool has been supplemented
with an automated search mechanism (simulated annealing)
that automates the process of finding near optimal sets of
decisions in the large space of possible mitigating actions.
We have also introduced some clustering abilities into DDP.
This allows a visual representation of sets of decisions that
are that are self-similar within each cluster, and significantly
distinct between cluster. In a parallel development, we have
been exploring the use of machine learning to identify those
critical decisions that have an especially strong impact on
cost and effectiveness.

4.1 Future Work: STAR1= simulated annealing
+ TAR2

In the future, we plan to explore additional ways of mod-
eling Requirements and risk early in the lifecycle, to more
completely integrate this existing set of tools, and to fur-
ther test this integrated package on actual projects at JPL or
other NASA laboratories. For example, the directed search
of SA needs less data than TAR2, but in doing so, we lose
the main advantage of TAR2; i.e. no drastic reduction in
the space of options. Perhaps we can get the best of both
approaches.

Our research is exploring combining the advantages of
TAR2 (the selection of a small number of critical decisions)

with SA (faster, directed search and an exploration of a
larger space of possibilities). The “jumps” in simulated an-
nealing are generated by mutating the best solution seen so
far. In traditional SA, these mutations are selected at ran-
dom. In our proposed approach, we would run a contrast
set learner in parallel with the SA to build up a probability
profile on settings that were most associated with worse so-
lutions. The mutation sub-routine of the SA would then be
modified to avoid mutations that include settings from the
worst solutions.

Our analogy for this process is that of a rocket flying
down towards some preferred solution. SA is the gravity
that pulls the rocket down faster while the contrast set learn-
ing is the booster than thrusts the rocket away from unde-
sired situations.

Specifically, our goals are:

� Implement STAR1, a combination of SA (or other AI
search algorithms) and TAR2, and integrate the result
with DDP� Tune the STAR1 such that it such that it terminates in� ���

seconds (i.e. in time to interact with some active
debate on some part of a DDP model).� Augment this integrated tool (STAR1) with a decision
clustering tool� Improve the modeling of risk in DDP through proba-
bility distributions� Test this supplemented version of DDP during live de-
bates on system options by JPL analysts.
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